If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-20n-12=0
a = 1; b = -20; c = -12;
Δ = b2-4ac
Δ = -202-4·1·(-12)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{7}}{2*1}=\frac{20-8\sqrt{7}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{7}}{2*1}=\frac{20+8\sqrt{7}}{2} $
| -x-16=35 | | 10k-7k-3k+2k+k=18 | | 16=k/9 | | -2(-3z-4)=-10 | | 4x°+40°=180° | | 108=12y | | 5(x+3)-1=3x+9 | | -7x+18=-2x+63 | | x1−11x=12 | | 4x+12=5x+39 | | 3+6x=2x+27 | | 9=3(-y-10) | | 9y+4y+10+15=0 | | 4x°+40°=180 | | -c-4=15 | | -1(2-x)=5 | | 3x-18=-x+12 | | -15x+20=65 | | -16=-2(3-v) | | 3b+11=-10 | | 180=180u | | (-19)=2v+9-6 | | 2h-2h+h-h+h=11 | | 6=3(w+1) | | 9y+4+10+15=0 | | 3(4-2v)=42 | | 4x+3x+6+90=180 | | x-8.3=-4.6 | | -12x-5=-89 | | 2b-b-6=0 | | 5p=13p-(-32) | | 24=-4(t+3) |